1,986 research outputs found

    System locates randomly placed remote objects

    Get PDF
    System to locate objects submerged underwater uses active/passive sonar techniques in which a transmitter is attached to the object to be recovered and a receiver is used for search. The system is rugged, has a long term operating life, and furnishes a precise bearing on the object

    Yield stress and shear-banding in granular suspensions

    Get PDF
    We study the emergence of a yield stress in dense suspensions of non-Brownian particles, by combining local velocity and concentration measurements using Magnetic Resonance Imaging with macroscopic rheometric experiments. We show that the competition between gravity and viscous stresses is at the origin of the development of a yield stress in these systems at relatively low volume fractions. Moreover, it is accompanied by a shear banding phenomenon that is the signature of this competition. However, if the system is carefully density matched, no yield stress is encountered until a volume fraction of 62.7 0.3%

    GMRT detection of HI 21 cm associated absorption towards the z=1.2 red quasar 3C 190

    Get PDF
    We report the GMRT detection of associated HI 21 cm-line absorption in the z=1.1946 red quasar 3C 190. Most of the absorption is blue-shifted with respect to the systemic redshift. The absorption, at \sim 647.7 MHz, is broad and complex, spanning a velocity width of \sim 600 \kms. Since the core is self-absorbed at this frequency, the absorption is most likely towards the hotspots. Comparison of the radio and deep optical images reveal linear filaments in the optical which overlap with the brighter radio jet towards the south-west. We therefore suggest that most of the HI 21 cm-line absorption could be occurring in the atomic gas shocked by the south-west jet.Comment: 8 pages, 1 fugure. To appear in Journal of Astrophysics and Astronom

    Morphology and evolution of emission line galaxies in the Hubble Ultra Deep Field

    Full text link
    We investigate the properties and evolution of a sample of galaxies selected to have prominent emission lines in low-resolution grism spectra of the Hubble Ultra Deep Field (HUDF). These objects, eGRAPES, are late type blue galaxies, characterized by small proper sizes (R_50 < 2 kpc) in the 4350A rest-frame, low masses (5x10^9 M_sun), and a wide range of luminosities and surface brightnesses. The masses, sizes and volume densities of these objects appear to change very little up to a redshift of z=1.5. On the other hand, their surface brightness decreases significantly from z=1.5 to z=0 while their mass-to-light ratio increases two-folds. This could be a sign that most of low redshift eGRAPES have an older stellar population than high redshift eGRAPES and hence that most eGRAPES formed at higher redshifts. The average volume density of eGRAPES is (1.8 \pm 0.3)x10^{-3} Mpc^{-3} between 0.3 < z < 1.5. Many eGRAPES would formally have been classified as Luminous Compact Blue Galaxies (LCBGs) if these had been selected based on small physical size, blue intrinsic color, and high surface brightness, while the remainder of the sample discussed in this paper forms an extension of LCBGs towards fainter luminosities.Comment: Accepted, to appear in Ap

    On Star Formation and the Non-Existence of Dark Galaxies

    Full text link
    We investigate whether a baryonic dark galaxy or `galaxy without stars' could persist indefinitely in the local universe, while remaining stable against star formation. To this end, a simple model has been constructed to determine the equilibrium distribution and composition of a gaseous protogalactic disk. Specifically, we determine the amount of gas that will transit to a Toomre unstable cold phase via the H2 cooling channel in the presence of a UV--X-ray cosmic background radiation field. All but one of the models are predicted to become unstable to star formation. Moreover, we find that all our model objects would be detectable via HI line emission, even in the case that star formation is potentially avoided. These results are consistent with the non-detection of isolated extragalactic HI clouds with no optical counterpart (galaxies without stars) by HIPASS. Additionally, where star formation is predicted to occur, we determine the minimum interstellar radiation field required to restore gravothermal stability, which we then relate to a minimum global star formation rate. This leads to the prediction of a previously undocumented relation between HI mass and star formation rate that is observed for a wide variety of dwarf galaxies in the HI mass range 10^8--10^10 M_sun. The existence of such a relation strongly supports the notion that the well observed population of dwarf galaxies represent the minimum rates of self-regulating star formation in the universe. (Barely abridged)Comment: 19 pages, 8 figures, TeX using emulateapj.cls, v2 accepted for publication in ApJ (16/8/5) with one figure deleted and a number of minor clarifying revision

    On the Structural Differences between Disk and Dwarf Galaxies

    Full text link
    Gas-rich dwarf and disk galaxies overlap in numerous physical quantities that make their classification subjective. We report the discovery of a separation between dwarfs and disks into two unique sequences in the mass (luminosity) versus scale length plane. This provides an objective classification scheme for late-type galaxies that only requires optical or near-IR surface photometry of a galaxy. Since the baryonic Tully-Fisher relation for these samples produces a continuous relation between baryonic mass and rotational velocity, we conclude that the difference between dwarfs and disks must be because of their distribution of stellar light such that dwarfs are more diffuse than disk galaxies. This structural separation may be due to a primordial difference between low and high mass galaxies or produced by hierarchical mergers where disks are built up from dwarfs. Structural differences between dwarf and disk galaxies may also be driven by the underlying kinematics where the strong rotation in disks produces an axial symmetric object that undergoes highly efficient star formation in contrast to the lower rotation, more disordered motion of dwarfs that produces a diffuse, triaxial object with a history of inefficient star formation.Comment: 16 pages, 2 figures, AJ in press, AASTeX5.

    Comparison of Langevin and Markov channel noise models for neuronal signal generation

    Full text link
    The stochastic opening and closing of voltage-gated ion channels produces noise in neurons. The effect of this noise on the neuronal performance has been modelled using either approximate or Langevin model, based on stochastic differential equations or an exact model, based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+Na^{+} and K+K^{+}, or only K+K^{+} voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and non-spiking membranes. Even with increasing numbers of channels the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels

    Electron spectroscopy of carbon materials: Experiment and theory

    Get PDF
    We present a comparative spectroscopic study of carbon as graphite, diamond and C60 using C1s K-edge electron energy-loss spectroscopy (EELS), X-ray emission spectroscopy, and theoretical modelling. The first principles calculations of these spectra are obtained in the local density approximation using a self-consistent Gaussian basis pseudo-potential method. Calculated spectra show excellent agreement with experiment and are able to discriminate not only between various carbon hybridisations but also local variation in environment. Core-hole effects on the calculated spectra are also investigated. For the first time, the EEL spectrum of carbyne is calculated
    corecore